
1

NIST Reference Platform and
API Implementation

Robert Snelick
National Institute of Standards & Technology (NIST)

rsnelick@nist.gov
www.dase.nist.gov

Support: ITL & NIST ATP (Advanced Technology Program)

2

NIST Reference Platform

• Open API Reference Implementation
• Sample DASE Applications
• API Unit Tests
• Tools
• STB Platforms

– NIST STB Simulation
– Real-time systems

3

Why a Reference Implementation?

• Proof of Concept
– detect inconsistencies and holes in API
– “benchmark” implementation

• Conformance Testing
– test against an implementation

• Application Development & Testing
– accelerate application development process

4

Benefits of a NIST RI

• Neutral, 3rd party
– no bias
– no preconceived notions

• Prototype Source Code
– public domain
– basis for an implementation
– component placeholders (modular)

5

Reference Platform Scope (I)

• DASE Reference Implementation
– What we are Doing:

• DASE Java APIs (java.tv, atsc, davic, havi)
• Application Management

– What we are NOT Doing (potential follow on):
• Presentation Engine

6

Reference Platform Scope (II)

• Set-top Box environment
– Simulation

• Java simulation

– Real-time Emulation
• Targeted to begin in the Fall/2000

– Commercial Receivers
• Will work with manufacturers in a collaborative

effort

7

API Implementation Design Goals
• Portable, Semantic Clarity

– Java implementation
– Intermediate software layer between API

implementation and STB environment
– no native code
– initially low priority given to performance and

system constraint issues

8

Reference Platform Design Stack

API Implementation

Hardware Abstraction Layer

Set-top Box Simulation

pJava

ATSC/MPEG DATA

data flow
method call

9

Hardware Abstract Layer
• intermediate software layer between API

implementation and STB environment
• portable layer
• common interface that abstracts lower layer
• transform low level data to high level

objects
– ATSC table data high-level objects
– merges ATSC tables

10

Reference Platform Architecture

pJava

STB
Simulation

Control

Hardware
Abstract

Layer

DASE
Application

DASE
API

Interface
Simulation

Classes

JVM

static ATSC info.

ATSC stream
parser

transport
stream

data flow
method call

(psip,data,pcr)

AV

(real streams)
(simulated ASTC/MPEG info.)

Implementation
Classes

11

Data Flow Example

DASE Application Objects

API Java Objects

HAL Java Objects

Simulation Java Objects

decode raw virtual channel

getATSCVirtualChannelTable()

getHALVirtualChannel()

getService()

map raw virtual channel

data flow

ATSC/MPEG Data

12

Current Status

• API Packages
– Service, Navigation, Guide
– Locator, SI
– Application, X-let
– User, Registry, Preferences
– Media, Graphics

STB Simulation
Hardware Abstract

API Implementation
Applications

Progress 100%

13

Sample Applications

• Native EPG
– SI Database access
– User’s Preferences

• Downloadable X-lets
– SI Database access
– Application Management
– Media

• Demonstrations at reception tonight

14

Electronic Program Guide
• native EPG application
• SI Database APIs
• user preferences APIs

15

EPG X-let
• downloadable provider specific EPG
• auto-start application, shared
• EPG appears on-screen if present in bitstream
• SI Database APIs (VCT, EIT)

16

EPG X-let
• additional ATSC/MPEG tables provide

more in-depth information on programs
• SI Database APIs (VCT, EIT, ETT, RRT)
• asynchronous data retrieval

17

Buyme X-let
• implements X-let and

MediaTimeEventListener interfaces
• auto-start X-let injected into

simulation
• Application Manager detects the

X-let and starts it
• registers to receive media time event
• X-let appears at requested time

18

Baseball Statistics X-let
• user-start application
• viewer activates X-let, Application Manager starts it
• statistics appears as long as X-let is present in the bitstream
• X-let disappears when no longer present in bitstream or

stopped by the viewer

19

Going Forward

• Complete prototype API implementation
– adjust to changes in specification
– build lower-level infrastructure

• possibly expand role to other components
• Port to other STB environments

– real-time emulation
– commercial receivers

20

NIST Reference Platform Resources

• Reference Implementation Source Code
• STB Simulation Platform Source Code
• Sample Applications
• Unit Tests
• Tools
• JavaDoc
• Documentation

21

Availability

• Free and available to anyone

• www.dase.nist.gov

22

Reference Platform Architecture

pJava

STB
Simulation

Control

Hardware
Abstract

Layer

DASE
Application

DASE
API

Interface
Simulation

Classes

JVM

static ATSC info.

ATSC stream
parser

transport
stream

data flow
method call

(psip, data, pcr)

AV

(real streams)
(simulated ASTC/MPEG info.)

Implementation
Classes

23

NIST Settop Box Simulation

Wayne Salamon
<wsalamon@nist.gov>

May 23, 2000

24

Overview

• The need for the STB simulation
• Simulation design
• Simulation components
• Data flow from simulation to API
• Java class code reuse
• Executing native applications and Xlets

25

The Need for an STB Simulation

• DASE API retrieves info from underlying
system

• Simulate successful as well as error
scenarios

• Maintain state of users and preferences
across API test runs

• Used to test Xlets

26

Simulation Design

• Independent of the API and HWAbstract
classes

• Implementation based on API requirements
• Performs data management, not information

management
– For example, applies no semantic meaning to

the contents of the PSIP tables

27

Simulation Design (cont.)

• Maintains the table consistency and will not
return a partially completed table

• Extracts modules from the Data Carousel
but doesn’t interpret the data
– For example, Xlet classes and data are

maintained as arrays of bytes

28

Simulation Components

• Small C program for initialization,
remainder in Java

• ATSC and MPEG table processing and
management

• Data carousel module processing
• Other data managers: user, preferences, etc.
• STB state: Power status, resource

availability, etc.

29

Data Flow Example

• Example of how the Virtual Channel Table
is extracted by the simulation and presented
to the HWAbstract layer

• Trace the class interactions needed to
provide this data

• All other tables are handled in a similar
manner

30

ATSCByteStreamParser

PrivateSectionParser ATSCInputStream

ATSCVirtualChannelTableManager

Private
Section

ATSCVirtualChannel

Extracting Virtual Channels

31

HWAbstract Channel Retrieval

DataManager

VirtualChannelTable HWAbstract

Simulation
ATSCVirtualChannelTableManager

ATSCVirtualChannel[]

32

Reuse of the Java classes

• Parsing is separated from table management
• The Huffman decoding is done by a

separate utility class which is used by the
parser classes

• Carousel module processing is an important
function and the classes in the simulation
can be reused for S13 protocol handling

33

Executing a Native Application

• Native applications have access to the
DASE API and public methods of the
HWAbstract classes

• Can be executed from the simulation
command line or another native application

• Classes must be found in the CLASSPATH
or the STBSIMCLASSPATH

34

Running an Xlet

• Xlets can be executed from the simulation
command line or injected through the data
stream

• Injected Xlets are either auto-started or
user-started

• Xlets can be controlled with the Application
Selection program

35

Conclusion
• STB Simulation is not dependent on the

API implementation
• Forms the basis of a Xlet development

environment
• Portable: Runs on multiple platforms
• Many of the STB classes can be reused
• Will be included in the NIST Reference

Platform distributed via the Web site
www.dase.nist.gov

